Nontotient - Nontotient

Na teoria dos números , um nontotiente é um inteiro positivo n que não é um número totiente : não está no intervalo da função totiente de Euler φ, ou seja, a equação φ ( x ) = n não tem solução x . Em outras palavras, n é um não-paciente se não houver um inteiro x que tenha exatamente n coprimos abaixo dele. Todos os números ímpares são nontotientes, exceto 1 , uma vez que tem as soluções x = 1 e x = 2. Os primeiros poucos nontotientes pares são

14 , 26 , 34 , 38 , 50 , 62 , 68 , 74 , 76 , 86 , 90 , 94 , 98 , 114 , 118 , 122 , 124 , 134 , 142 , 146 , 152 , 154 , 158 , 170 , 174 , 182 , 186 , 188 , 194 , 202 , 206 , 214 , 218 , 230 , 234 , 236 , 242 , 244 , 246 , 248 , 254 , 258 , 266 , 274 , 278 , 284 , 286 , 290 , 298 , .. . (sequência A005277 no OEIS )

Pelo menos k tal que o totiente de k é n são (0 se não existir tal k )

1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, ... (sequência A049283 no OEIS )

Máximo k tal que o totiente de k é n são (0 se não existir tal k )

2, 6, 0, 12, 0, 18, 0, 30, 0, 22, 0, 42, 0, 0, 0, 60, 0, 54, 0, 66, 0, 46, 0, 90, 0, 0, 0, 58, 0, 62, 0, 120, 0, 0, 0, 126, 0, 0, 0, 150, 0, 98, 0, 138, 0, 94, 0, 210, 0, 0, 0, 106, 0, 162, 0, 174, 0, 118, 0, 198, 0, 0, 0, 240, 0, 134, 0, 0, 0, 142, 0, 270, ... (sequência A057635 na OEIS )

Número de k s tais que φ ( k ) = n são (comece com n = 0)

0, 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, ... ( sequência A014197 no OEIS )

De acordo com a conjectura de Carmichael, não há 1s nesta sequência.

Um não-paciente par pode ser um a mais do que um número primo , mas nunca um a menos, uma vez que todos os números abaixo de um número primo são, por definição, coprime dele. Para colocá-lo algebricamente, para p primo: φ ( p ) = p  - 1. Além disso, um número prônico n ( n  - 1) certamente não é um nontotiente se n for primo, pois φ ( p 2 ) = p ( p  - 1 )

Se um número natural n for um totiente, pode-se mostrar que n * 2 k é um totiente para todo número natural k .

Existem infinitamente muitos números pares não-dotados: na verdade, existem infinitamente muitos números primos distintos p (como 78557 e 271129, veja o número de Sierpinski ), de modo que todos os números da forma 2 a p são não-dotados, e todo número ímpar tem um múltiplo par que é um não-paciente.

n números k tais que φ ( k ) = n n números k tais que φ ( k ) = n n números k tais que φ ( k ) = n n números k tais que φ ( k ) = n
1 1, 2 37 73 109
2 3, 4, 6 38 74 110 121, 242
3 39 75 111
4 5, 8, 10, 12 40 41, 55, 75, 82, 88, 100, 110, 132, 150 76 112 113, 145, 226, 232, 290, 348
5 41 77 113
6 7, 9, 14, 18 42 43, 49, 86, 98 78 79, 158 114
7 43 79 115
8 15, 16, 20, 24, 30 44 69, 92, 138 80 123, 164, 165, 176, 200, 220, 246, 264, 300, 330 116 177, 236, 354
9 45 81 117
10 11, 22 46 47, 94 82 83, 166 118
11 47 83 119
12 13, 21, 26, 28, 36, 42 48 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210 84 129, 147, 172, 196, 258, 294 120 143, 155, 175, 183, 225, 231, 244, 248, 286, 308, 310, 350, 366, 372, 396, 450, 462
13 49 85 121
14 50 86 122
15 51 87 123
16 17, 32, 34, 40, 48, 60 52 53, 106 88 89, 115, 178, 184, 230, 276 124
17 53 89 125
18 19, 27, 38, 54 54 81, 162 90 126 127, 254
19 55 91 127
20 25, 33, 44, 50, 66 56 87, 116, 174 92 141, 188, 282 128 255, 256, 272, 320, 340, 384, 408, 480, 510
21 57 93 129
22 23, 46 58 59, 118 94 130 131, 262
23 59 95 131
24 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 60 61, 77, 93, 99, 122, 124, 154, 186, 198 96 97, 119, 153, 194, 195, 208, 224, 238, 260, 280, 288, 306, 312, 336, 360, 390, 420 132 161, 201, 207, 268, 322, 402, 414
25 61 97 133
26 62 98 134
27 63 99 135
28 29, 58 64 85, 128, 136, 160, 170, 192, 204, 240 100 101, 125, 202, 250 136 137, 274
29 65 101 137
30 31, 62 66 67, 134 102 103, 206 138 139, 278
31 67 103 139
32 51, 64, 68, 80, 96, 102, 120 68 104 159, 212, 318 140 213, 284, 426
33 69 105 141
34 70 71, 142 106 107, 214 142
35 71 107 143
36 37, 57, 63, 74, 76, 108, 114, 126 72 73, 91, 95, 111, 117, 135, 146, 148, 152, 182, 190, 216, 222, 228, 234, 252, 270 108 109, 133, 171, 189, 218, 266, 324, 342, 378 144 185, 219, 273, 285, 292, 296, 304, 315, 364, 370, 380, 432, 438, 444, 456, 468, 504, 540, 546, 570, 630

Referências

  • Guy, Richard K. (2004). Problemas não resolvidos na teoria dos números . Livros de problemas em matemática. New York, NY: Springer-Verlag . p. 139. ISBN 0-387-20860-7. Zbl  1058.11001 .
  • L. Havelock, A Few Observations on Totient and Cototient Valence from PlanetMath
  • Sándor, Jozsef; Crstici, Borislav (2004). Manual da teoria dos números II . Dordrecht: Kluwer Academic. p. 230. ISBN 1-4020-2546-7. Zbl  1079.11001 .
  • Zhang, Mingzhi (1993). "Em nontotients" . Journal of Number Theory . 43 (2): 168–172. doi : 10.1006 / jnth.1993.1014 . ISSN  0022-314X . Zbl  0772.11001 .